New technological developments in Health Monitoring of rodent colonies and 3 R’s

Serban Morosan, DVM, PhD, Dip. Vet LAS
UMS 28 phenotype du petit animal
Faculty of Medicine Pierre et Marie Curie, Paris
Commonly Recognized Viral and Bacterial Pathogens

- Organisms in black are less likely to cause clinical disease
 - May cause disease in some mice

- Organisms highlighted in red are more likely to cause clinical disease
 - Don’t *always* cause disease
Respiratory pathogens

- Sendai virus
- *Mycoplasma pulmonis*
- CAR bacillus
- Pneumonia virus of mice (immunodeficient only)
- K virus

Skin and joint pathogens

- Ectromelia virus
- *Streptobacillus moniliformis* (zoontotic)
- Fleas, ticks, mites
• **Digestive system pathogens**
 - Mouse cytomegalovirus
 - Mouse thymic virus
 - Mouse hepatitis virus
 - Mouse rotavirus
 - Reovirus 3
 - Mouse adenoviruses
 - *Bacillus piliformis*
 - *Salmonella enteritidis* (zoonotic)
 - *Citrobacter freundii*

• **CNS pathogens**
 - GDVII (Theiler’s virus)
 - Encephalitozoon cuniculi
• Hemopoietic pathogens
 Lymphocytic choriomeningitis virus *(zoonotic)*
 Lactic dehydrogenase – elevating virus

• Pathogens affecting multiple systems
 Minute virus of mice
 Polyoma virus *(immunodeficient only)*
 Hantaviruses *(zoonotic)*
Factors Affecting Ease of Eradication

- **Organisms that are most difficult to eradicate include those that exhibit two or more of the following characteristics**
 - Spread very easily and/or rapidly
 - May be shed for long periods of time by immunocompetent animals
 - May persistent for long periods of time in the environment
 - May present diagnostic challenges

- **Organisms that are easiest to eradicate typically**:
 - Spread slowly and/or only by direct contact
 - Are quickly eliminated by immunocompetent* animals
 - Are rapidly inactivated under normal environmental conditions
 - Are reliably detected using standard diagnostic tests

* NOTE: Infections, and shedding, may persist far longer in immune compromised or deficient animals
Most Difficult to Eradicate

- Hantavirus
- K virus
- Lymphocytic choriomeningitis virus
- Minute virus of mice
- Mouse hepatitis virus
- Mouse parvovirus
- Mouse rotavirus
- Polyoma virus
- Sendai virus
Moderately Difficult to Eradicate

• *Corynebacterium* (Note: may be difficult to eradicate once established in a population)
• Ectromelia virus
• GDVII (Theiler’s) virus
• Mouse adenovirus
• Reovirus 3
• *Clostridium piliforme*
• *Mycoplasma arthritidis*
• *Mycoplasma pulmonis*
• *Salmonella*
Least Difficult to Eradicate

- Lactic dehydrogenase elevating virus
- Mouse cytomegalovirus
- Mouse thymic virus
- CAR bacillus
- *Citrobacter rodentium* (moderate?)
- *Streptobacillus moniliformis*
- Pneumonia virus of mice
Least Difficult to Eradicate

- Lactic dehydrogenase elevating virus
- Mouse cytomegalovirus
- Mouse thymic virus
- CAR bacillus
- *Citrobacter rodentium* (moderate?)
- *Streptobacillus moniliformis*
- Pneumonia virus of mice
Mouse Adapted
Opportunistic Pathogens
Mouse Norovirus

• Recently recognized virus of laboratory mice
 – Considered an opportunist by some, pathogen by others

• Asymptomatic infections in most animals
 – Mild transient inflammation of liver and spleen (red pulp hypertrophy and white pulp activation)
 – Tropism for macrophages and dendritic cells

• Virus can persist up to 8 weeks in spleen, mesenteric lymph nodes, jejunum
 – Persistent infection in severely immunodeficient mice
Clinical Disease Due to MNV

• Seen only in mice with deficiencies of the innate immune response, specifically those lacking intact interferon signaling pathways due to a lack of type I and/or type II IFN receptors or the STAT-1 molecule
 – Severe pneumonia and destruction of splenic and liver tissues
 – Significant mortality among affected animals
 – Exclude from these mice

Deficiencies of the acquired immune response, even severe immune deficiencies, do not predispose to disease
Pneumocystis murina

- A genus of fungal organisms affecting many species of animals
 - Different *Pneumocystis* species infect different animals
 - *P. murina* infects mice

- No disease in immunocompetent mice
 - Adults clear infections within 3 weeks
 - May take up to 6 weeks in mice infected as neonates

- Pathogenic for severely immunodeficient or immune-suppressed mice
 - Pneumonia progresses to death if not treated
 - Exclude from these mice
Helicobacter

- Over 25 species, many of which persistently colonize mouse GI as commensals

- Most species asymptomatic in most mice - may complicate studies of GI/liver
 - *H. hepaticus* may cause hepatitis, IBD, liver/lower bowel cancer in susceptible strains (A, BALB/c, C3H, SJL, immunodeficient)
 - *H. bilis* may cause typhlitis/hepatitis in immunodeficient, rarely immunocompetent strains
 - Pathogenicity of others not established

- Consider excluding *H. hepaticus* and *H. bilis*, esp from susceptible colonies
Pasteurella

Many commensal species infecting mice, most with low pathogenic potential

- *P. pneumotropica* complex has higher pathogenic potential
 - Highest in immunodeficient mice and as co-pathogen
 - CBA/J and C3H/He also ↑ ?susceptibility

- Possible pneumonia, conjunctivitis, panophthalmitis, dacryoadenitis, otitis, mastitis, inflammation/ abscesses of GU tract

- Consider excluding, esp from susceptible strains
Corynebacterium

- Many species are considered normal flora of skin and MM in humans and other animals
- *C. bovis* and *C. kutscheri* may cause disease in mice – consider excluding, esp from susceptible strains
- *C. bovis* - usually transient colonization of skin
 - Nude mice more prone hyperkeratotic dermatitis
 - Occasional mild disease in haired, severely immunodeficient mice and hairless mice
- *C. kutscheri* – usually asymptomatic colonization of GI
 - Clinical disease possible, esp in BALB/c, A/J, CBA, immunodeficient & stressed mice
 - Internal abscesses, septic arthritis, lymphadenopathy
Opportunists Carried by Humans or Widespread in Environment
Beta-hemolytic *Streptococcus*

- Hardy facultative anaerobic bacterium

- Non-hemolytic commensal strains colonize the mouth/nose, GI tract and genital mucosa

- Virulent β-hemolytic strains most likely to cause disease in mice
 - Also carried by many clinically healthy mice and humans
 - Produce a variety of secreted proteins, incl. exotoxins that have immunomodulatory effects as superantigens
Strep Health Effects

• Most commonly associated with strains of Lancefield’s group B (serotype)

• Syndromes include meningoencephalitis, pyelonephritis, myocarditis, metritis, hepatitis, pneumonia, dermatitis

• Susceptibility to disease increased with stress
 – No difference related to age or immune status
 – DBA/2 more sensitive than most mice

• Ideally, focus on exclusion of more pathogenic strains
 – Most important to exclude if mice will be stressed (e.g., surgery, irradiation)
Many species of hardy gram positive bacteria
 - Commonly colonize the skin, MM, and GI tract of humans and animals

Pathogenicity varies with Staph species and host factors
 - *S. aureus* (1°), *S. xylosus* (2°) most often associated with disease in mice; others occasionally

Possible disease problems
 - Superficial and deep cutaneous abscesses; dermatitis, esp in BL/6 and other black mice
 - Preputial gland abscesses
 - Retrobulbar cellulitis and abscesses
Staphyloccoccus

- Many species of hardy gram positive bacteria
 - Commonly colonize the skin, MM, and GI tract of humans and animals

- Pathogenicity varies with Staph species and host factors
 - *S. aureus* (1°), *S. xylosus* (2°) most often associated with disease in mice; others occasionally

- Possible disease problems
 - Superficial and deep cutaneous abscesses; dermatitis, esp in BL/6 and other black mice
 - Preputial gland abscesses
 - Retrobulbar cellulitis and abscesses
Most Susceptible to Staph Disease

- Very young, aged, stressed mice
- Sensitive strains - BALB/c, DBA/2, C57BL/6

Exclusion – esp. S. aureus and S. xylosus – most important if using:
 - Severely immunodeficient, nude
 - Specific immune deficiencies, e.g.,
 - Cybb knockout (lacks phagocyte superoxide production)
 - Nos2 knockout (lacks cytokine-inducible nitric oxide synthase)
 - C3H/He (homozygous for the defective LPS response allele Tlr4Lps-d)
 - Also Tlr4 knockouts
Pseudomonas

• Abundant in soil, water, sewage, agricultural products
 – Not indigenous flora of mice, but commonly found
 – Normally found in human GI and skin

• Health effects –1° immunodeficient or immunosuppressed
 – Upper respiratory disease, otitis media and/or interna, septicemia with hemorrhage & necrosis in multiple organs

• Consider excluding if using: immunodeficient or immunosuppressed animals (irradiated, cyclophosphamide tx, experimental injury, etc); diabetic mice; C3H/He
Proteus

• Ubiquitous in nature (soil, water, sewage) and found in upper respiratory tract and GI of many species, incl. mice

• Health effects
 – Urinary tract infections, including pyelonephritis, most common
 – Systemic disease in severely immunodeficient mice

• Consider excluding if using sensitive strains
C3H/He, Cybb knockout, diabetic, or severely immunodeficient mice
Klebsiella

• Normal inhabitant of human and animal GI; ubiquitous in water, sewage, soil, wood products, grain and other plants

• Rarely associated with disease in mice
 – Host factors and concurrent disease conditions critical determinants of pathogenicity
 – Disease possible if host defenses compromised due to stressful experimental manipulations (surgery, irradiation)

• Recommend excluding if using C3H/He mice
Escherichia coli

• Common commensal of the GI tract of mice and many other species, including humans

• Most strains of *E. coli* are nonpathogenic
 – Some strains may cause disease in immunodeficient mice
 – Diarrhea, pneumonia, UTI, meningitis, septicemia

• No evidence of pathenogenicity in immunocompetent mice

• Consider excluding if using severely immunodeficient mice